Header bannerHeader banner
Advisory ID:
BRLY-2021-020

[BRLY-2021-020] SMM callout vulnerability in combined DXE/SMM on Fujitsu device (SMM arbitrary code execution)

February 1, 2022
Severity:
High
CVSS Score
8.2
Public Disclosure Date:
February 6, 2022

Summary

Binarly REsearch Team identified a SMM callout in a Fujitsu device, which allows an attacker to access the System Management Mode and execute arbitrary code.
Vendors Affected Icon

Vendors Affected

Fujitsu
Affected Products icon

Affected Products

No items found.

Potential Impact

An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into the BIOS. Such a malicious firmware code in the BIOS could persist across operating system re-installs. Additionally, this vulnerability could potentially be used by threat actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).

Summary

Binarly REsearch Team identified a SMM callout in a Fujitsu device, which allows an attacker to access the System Management Mode and execute arbitrary code.

Vulnerability Information

  • BINARLY internal vulnerability identifier: BRLY-2021-020
  • CERT/CC assigned case number: VU#796611
  • Insyde PSIRT assigned CVE identifier: CVE-2020-27339
  • CVSS v3.1: 8.2 High AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Affected Fujitsu firmwares with confirmed impact by Binarly REsearch Team

Device name Driver name Driver SHA256 File GUID
Fujitsu LIFEBOOK E459/E449 IdeBusDxe 4b91d7456d48b897106f97d419426840ef3c62844797b21b4c46fb4628fbae58 69FD8E47-A161-4550-B01A-5594CEB2B2B2

Potential impact

An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into the BIOS. Such a malicious firmware code in the BIOS could persist across operating system re-installs. Additionally, this vulnerability could potentially be used by threat actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).

Vulnerability description

In the function at offset 0xEBC (image sha256: 4b91d7456d48b897106f97d419426840ef3c62844797b21b4c46fb4628fbae58), the child software System Management Interrupt (SWSMI) handler with the GUID 54c03d2d-5903-4dfb-88b7-fa7636be03d1 is registered:

if ( SmstIsNotNull() )
{
  Handle1 = 0;
  gBS_E738->InstallProtocolInterface(&Handle1, &ProprietaryProtocol_D8C0, EFI_NATIVE_INTERFACE, 0);
  gHandle = Handle;
  return gSmst_E718->SmiHandlerRegister(SmiHandler_1C10, &gSmiHandlerGuid, &DispatchHandle);
}

Find below the decompiled SWSMI handler code:

EFI_STATUS __fastcall SmiHandler_80000A14(
        EFI_HANDLE DispatchHandle,
        const void *Context,
        void *CommBuffer,
        UINTN *CommBufferSize)
{
  // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

  if ( !CommBuffer || !CommBufferSize )
    return 0;
  if ( *CommBuffer == 1 )
  {
    Buffer = 0;
    if ( gBS_8000C6E0->LocateHandleBuffer(
           ByProtocol,
           &EFI_ATA_PASS_THRU_PROTOCOL_GUID_8000BE10,
           0,
           &NoHandles,
           &Buffer) )
    {
      Status = EFI_NOT_FOUND;
    }
    else
    {
      gBS_8000C6E0->FreePool(Buffer);
      Buffer = 0;
      BufferSize = 0;
      v6 = gSmst_8000C718->SmmLocateHandle(
             ByProtocol,
             &EFI_ATA_PASS_THRU_PROTOCOL_GUID_8000BE10,
             0,
             &BufferSize,
             0);
      Status = EFI_NOT_FOUND;
      if ( v6 )
      {
        if ( v6 == EFI_BUFFER_TOO_SMALL )
        {
          gSmst_8000C718->SmmAllocatePool(EfiRuntimeServicesData, BufferSize, &Buffer);
          if ( !Buffer )
          {
            Status = EFI_OUT_OF_RESOURCES;
            goto _WriteStatus;
          }
          v6 = gSmst_8000C718->SmmLocateHandle(
                 ByProtocol,
                 &EFI_ATA_PASS_THRU_PROTOCOL_GUID_8000BE10,
                 0,
                 &BufferSize,
                 Buffer);
        }
        else if ( v6 != EFI_NOT_FOUND )
        {
          goto _WriteStatus;
        }
      }
      if ( v6 == EFI_NOT_FOUND )
        v7 = 0;
      else
        v7 = BufferSize >> 3;
      gSmst_8000C718->SmmFreePool(Buffer);
      if ( v7 == NoHandles )
        goto LABEL_18;
      if ( !Handle )
      {
        Status = EFI_NOT_READY;
        goto _WriteStatus;
      }
      Status = sub_8000082C(1, Handle);
      if ( !Status || Status == EFI_ALREADY_STARTED )
      {
        result = gBS_8000C6E0->HandleProtocol(Handle, &EFI_LOADED_IMAGE_PROTOCOL_GUID_8000BF00, &EfiLoadedImageProtocol);
        if ( result )
          return result;
        EfiLoadedImageProtocol->Unload = Unload;
        if ( !gBS_8000C6E0->LocateProtocol(&EFI_ACPI_SUPPORT_PROTOCOL_GUID_8000BE90, 0, &EfiAcpiSupport) )
        {
          v9 = 0;
          do
          {
            v10 = (EfiAcpiSupport->GetAcpiTable)(EfiAcpiSupport, v9, &Buffer, &v18, v17);
            if ( !v10 )
            {
              if ( *Buffer == 'PCAF' )
              {
                v10 = EFI_ABORTED;
                gFacpValue = *(Buffer + 19);
              }
              gBS_8000C6E0->FreePool(Buffer);
            }
            ++v9;
          }
          while ( !v10 );
        }
        goto _WriteStatus;
      }
      if ( Status == EFI_NOT_STARTED )
LABEL_18:
        Status = 0;
    }
  }
  else
  {
    Status = EFI_UNSUPPORTED;
  }
_WriteStatus:
  *(CommBuffer + 4) = Status;
  return 0;
}

If CommBuffer and CommBufferSize pointers are not-NULL and the first DWORD from CommBuffer is equal to 0x01, the following code will be executed:

Buffer = 0;
if ( gBS_8000C6E0->LocateHandleBuffer(
        ByProtocol,
        &EFI_ATA_PASS_THRU_PROTOCOL_GUID_8000BE10,
        0,
        &NoHandles,
        (EFI_HANDLE **)&Buffer) )
{
  Status = EFI_NOT_FOUND;
}

Using services from EFI_BOOT_SERVICES (in this case LocateHandleBuffer()) inside a SW SMI handler is unsafe and may lead to arbitrary code execution in SMM.

In addition to this example, this SMI handler uses other services from the EFI_BOOT_SERVICES tables.See below the vulnerable code snippet from the sub_8000082C() function (SmiHandler_80000A14() -> sub_8000082C()):

EFI_STATUS __fastcall sub_8000082C(char a1, EFI_STATUS (__cdecl *a2)(EFI_ATA_PASS_THRU_PROTOCOL *This, UINT16 *Port))
{
  // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

  NoHandles = 0;
  Buffer = 0;
  v4 = gBS_8000C6E0->LocateProtocol(&EFI_LEGACY_BIOS_PROTOCOL_GUID_8000BE40, 0, &EfiLegacyBiosProtocol);
  v5 = byte_8000C6A8;
  if ( !v4 )
    v5 = 1;
  byte_8000C6A8 = v5;
  if ( !a1 )
    return 0;
  if ( !gBS_8000C6E0->LocateProtocol(&EFI_SMM_RUNTIME_PROTOCOL_GUID_8000BDE0, 0, &gEfiSmmRuntimeProtocol) )
    (gEfiSmmRuntimeProtocol->Method_0)(&EFI_SMM_RUNTIME_PROTOCOL_GUID_8000BDE0, 0, &gEfiSmmRuntimeProtocol);
  result = gBS_8000C6E0->LocateHandleBuffer(
             ByProtocol,
             &EFI_ATA_PASS_THRU_PROTOCOL_GUID_8000BE10,
             0,
             &NoHandles,
             &Buffer);
  ...
  return result;
}

To exploit this vulnerability is enough to:

  • overwrite the service address in the EFI_BOOT_SERVICES table with the shellcode address
  • trigger the SWSMI handler (SwSmi number is specified in UEFI ACPI table)

Disclosure timeline

This bug is subject to a 90 day disclosure deadline. After 90 days elapsed or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public.

Disclosure Activity Date
Fujitsu PSIRT is notified 2021-09-10
Fujitsu PSIRT is confirmed issue 2021-09-14
CERT/CC created a case 2021-09-27
Insyde PSIRT assigned CVE number 2021-11-01
Insyde PSIRT provide patch release 2021-11-09
BINARLY public disclosure date 2022-02-01

Acknowledgements

Binarly REsearch Team

Tags
SMM
DXE
FWHunt
See if you are impacted now with our Firmware Vulnerability Scanner