Header bannerHeader banner
Advisory ID:
BRLY-2022-003

[BRLY-2022-003] SMM memory corruption vulnerability in SMM driver on Intel platforms.

August 10, 2022
Severity:
High
CVSS Score
7.5
Public Disclosure Date:
August 10, 2022

Summary

Binarly REsearch Team has discovered SMM memory corruption vulnerability on Intel platforms allowing a possible attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
Vendors Affected Icon

Vendors Affected

Intel
Affected Products icon

Affected Products

Intel NUC M15

Potential Impact

An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).

Summary

Binarly REsearch Team has discovered SMM memory corruption vulnerability on Intel platforms allowing a possible attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.

Vulnerability Information

  • BINARLY internal vulnerability identifier: BRLY-2022-003
  • Intel PSIRT assigned CVE identifier: CVE-2022-27493
  • AMI PSIRT assigned CVE identifier: CVE-2022-40261
  • CERT/CC assigned case number: VU#158026
  • FwHunt rule: BRLY-2022-003
  • CVSS v3.1: 7.5 High AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H

Affected Intel firmwares with confirmed impact by Binarly REsearch Team

Device/Firmware File Name SHA256 (File PE32 section) File GUID
Intel NUC M15 OverClockSmiHandler a204699576e1a48ce915d9d9423380c8e4c197003baf9d17e6504f0265f3039c 4698C2BD-A903-410E-AD1F-5EEF3A1AE422

Potential impact

An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an evironment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).

Vulnerability description

The vulnerability exists in SW SMI handler located at offset 0x1480 in the binary.The pseudocode for this handler is shown below:

__int64 __fastcall SwSmiHandlerB2(
        EFI_HANDLE DispatchHandle,
        const void *Context,
        void *CommBuffer,
        UINTN *CommBufferSize)
{
  // Local variables initialization

  Res = 0;
  v43 = 0;
  v44 = 0;
  v45 = 0;
  DataSize = 0x75;
  v26 = 0;
  v30 = 0;
  Status = gEfiSmmVariableProtocol->SmmGetVariable(L"OcSetup", &gVariableGuid, &Attributes, &DataSize, Data);
  if ( Status < 0 )
    return Status;
  if ( !Data[39] )
    return Status;
  CpuIndex = 0xFFFFFFFFFFFFFFFF;
  if ( CommBuffer && CommBufferSize )
    CpuIndex = *CommBuffer;
  if ( CpuIndex == -1 )
    return EFI_UNSUPPORTED;
  Status = (SmmCpuProtocol->ReadSaveState)(SmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RBX, CpuIndex, &RbxValue);
  Status = (SmmCpuProtocol->ReadSaveState)(SmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RCX, CpuIndex, &RcxValue);
  Ptr = RbxValue;
  Ptr16 = (RbxValue + 16);
  v27 = sub_3544();
  v29 = sub_352C();
  v28 = sub_3514();
  if ( RcxValue >= 3 )
  {
    Res = 0x8004;
    result = (SmmCpuProtocol->WriteSaveState)(SmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RBX, CpuIndex, &Res);
    Status = result;
    return result;
  }
  if ( !RcxValue )
  {
    v46 = 12;
    v26 = 456;
    v30 = 55;
    if ( v27 )
    {
      v26 += 8;
      ++v30;
      if ( v29 )
      {
        v26 += 32;
        v30 += 4;
      }
      if ( v28 )
      {
        v26 += 8 * word_40E8;
        v30 += word_40E8;
      }
    }
    if ( *Ptr != '2DB$' )
    {
      if ( *Ptr == '$DB$' )
      {
        *Ptr = '2DB$';
        *(Ptr + 4) = v26;
        *(Ptr + 8) = 2;
        *(Ptr + 10) = 0;
        Res = 1;
      }
      else
      {
        Res = 0x8001;
      }
      result = (SmmCpuProtocol->WriteSaveState)(SmmCpuProtocol, 4, 39, CpuIndex, &Res);
      Status = result;
      return result;
    }
    if ( *(Ptr + 4) <= v26 )
    {
      if ( *(Ptr + 4) < v46 )
      {
        Res = 0x8003;
        result = (SmmCpuProtocol->WriteSaveState)(SmmCpuProtocol, 4, 39, CpuIndex, &Res);
        Status = result;
        return result;
      }
      if ( *(Ptr + 4) < v26 )
      {
        *(Ptr + 4) = v26;
        *(Ptr + 8) = 2;
        *(Ptr + 10) = 0;
        Res = 0x8002;
        result = (SmmCpuProtocol->WriteSaveState)(SmmCpuProtocol, 4, 39, CpuIndex, &Res);
        Status = result;
        return result;
      }
      Res = 0;
      Status = (SmmCpuProtocol->WriteSaveState)(SmmCpuProtocol, 4, 39, CpuIndex, &Res);
      *(Ptr + 8) = 2;
      *(Ptr + 10) = 0;
    }
    else
    {
      *(Ptr + 4) = v26;
      *(Ptr + 8) = 2;
      *(Ptr + 10) = 0;
      Res = 2;
      Status = (SmmCpuProtocol->WriteSaveState)(SmmCpuProtocol, 4, 39, CpuIndex, &Res);
    }
    *(Ptr + 12) = v30;
    *Ptr16 = 0x29;
    Ptr16[1] = Data[40];
    Ptr16[2] = 0;
    Ptr16[3] = Data[41];
    Ptr16[4] = 7;
    Ptr16[5] = Data[1];
    Ptr16[6] = 8;
    Ptr16[7] = Data[2];
    Ptr16[8] = 10;
    Ptr16[9] = *&Data[3];
    Ptr16[10] = 11;
    if ( Data[5] )
      Ptr16[11] = Data[5];
    else
      Ptr16[11] = -2;
    Ptr16[12] = 21;
    Ptr16[13] = *&Data[6];
    Ptr16[14] = 22;
    Ptr16[15] = Data[8];
    Ptr16[16] = 23;
    Ptr16[17] = Data[9];
    Ptr16[18] = 25;
    Ptr16[19] = Data[10];
    Ptr16[20] = 40;
    Ptr16[21] = *&Data[11];
    Ptr16[22] = 24;
    if ( Data[14] )
      Ptr16[23] = Data[14];
    else
      Ptr16[23] = -2;
    Ptr16[24] = 19;
    if ( Data[16] == Data[15] )
      Ptr16[25] = -2;
    else
      Ptr16[25] = Data[16];
    Ptr16[26] = 5;
    Ptr16[27] = *&Data[18];
    Ptr16[28] = 1;
    Ptr16[29] = *&Data[21];
    Ptr16[30] = 59;
    Ptr16[31] = Data[25];
    Ptr16[32] = 101;
    Ptr16[33] = Data[99];
    Ptr16[34] = 88;
    Ptr16[35] = Data[44];
    Ptr16[36] = 284;
    Ptr16[37] = Data[108];
    Ptr16[38] = 102;
    Ptr16[39] = *&Data[95];
    Ptr16[40] = 114;
    Ptr16[41] = Data[97];
    Ptr16[42] = 115;
    Ptr16[43] = Data[98];
    v5 = 22;
    if ( Data[44] )
    {
      if ( Data[44] == 1 )
      {
        Ptr16[44] = 2;
        Ptr16[45] = *&Data[45];
        v5 = 23;
      }
    }
    else
    {
      Ptr16[44] = 2;
      Ptr16[45] = *&Data[47];
      v5 = 23;
    }
    if ( Data[51] == 1 )
      v33 = 1000 - *&Data[49];
    else
      v33 = *&Data[49] + 1000;
    Ptr16[2 * v5] = 34;
    Ptr16[2 * v5 + 1] = v33;
    v6 = v5 + 1;
    Ptr16[2 * v6] = 66;
    Ptr16[2 * v6++ + 1] = Data[61];
    Ptr16[2 * v6] = 64;
    Ptr16[2 * v6++ + 1] = Data[26];
    Ptr16[2 * v6] = 73;
    Ptr16[2 * v6 + 1] = Data[27];
    v7 = v6 + 1;
    if ( v27 )
    {
      Ptr16[2 * v7] = 26;
      Ptr16[2 * v7++ + 1] = Data[62];
      if ( v28 )
      {
        Ptr16[2 * v7] = 29;
        Ptr16[2 * v7 + 1] = Data[63];
        v8 = v7 + 1;
        Ptr16[2 * v8] = 30;
        Ptr16[2 * v8 + 1] = Data[64];
        v7 = v8 + 1;
        if ( word_40E8 > 2u )
        {
          Ptr16[2 * v7] = 31;
          Ptr16[2 * v7 + 1] = Data[65];
          v9 = v7 + 1;
          Ptr16[2 * v9] = 32;
          Ptr16[2 * v9 + 1] = Data[66];
          v7 = v9 + 1;
          if ( word_40E8 > 4u )
          {
            Ptr16[2 * v7] = 42;
            Ptr16[2 * v7 + 1] = Data[67];
            v10 = v7 + 1;
            Ptr16[2 * v10] = 43;
            Ptr16[2 * v10 + 1] = Data[68];
            v7 = v10 + 1;
            if ( word_40E8 > 6u )
            {
              Ptr16[2 * v7] = 96;
              Ptr16[2 * v7 + 1] = Data[69];
              v11 = v7 + 1;
              Ptr16[2 * v11] = 97;
              Ptr16[2 * v11 + 1] = Data[70];
              v7 = v11 + 1;
            }
          }
        }
      }
      if ( v29 )
      {
        Ptr16[2 * v7] = 50;
        Ptr16[2 * v7 + 1] = Data[71];
        v12 = v7 + 1;
        Ptr16[2 * v12] = 49;
        Ptr16[2 * v12 + 1] = Data[80];
        v13 = v12 + 1;
        Ptr16[2 * v13] = 47;
        if ( *&Data[81] == *&Data[85] )
          Ptr16[2 * v13 + 1] = -2;
        else
          Ptr16[2 * v13 + 1] = *&Data[81];
        v14 = v13 + 1;
        Ptr16[2 * v14] = 48;
        if ( *&Data[72] == *&Data[76] )
          Ptr16[2 * v14 + 1] = -2;
        else
          Ptr16[2 * v14 + 1] = *&Data[72];
        v7 = v14 + 1;
      }
    }
    Ptr16[2 * v7] = 76;
    Ptr16[2 * v7 + 1] = Data[52];
    v15 = v7 + 1;
    v32 = (Data[89] & 1) == 0;
    Ptr16[2 * v15] = 80;
    Ptr16[2 * v15++ + 1] = v32;
    Ptr16[2 * v15] = 82;
    Ptr16[2 * v15 + 1] = Data[28];
    v16 = v15 + 1;
    if ( Data[28] )
    {
      if ( Data[28] == 1 )
      {
        Ptr16[2 * v16] = 81;
        Ptr16[2 * v16++ + 1] = *&Data[32];
      }
    }
    else
    {
      Ptr16[2 * v16] = 81;
      Ptr16[2 * v16++ + 1] = *&Data[34];
    }
    if ( Data[31] == 1 )
      v24 = 1000 - *&Data[29];
    else
      v24 = *&Data[29] + 1000;
    Ptr16[2 * v16] = 83;
    Ptr16[2 * v16 + 1] = v24;
    v17 = v16 + 1;
    Ptr16[2 * v17] = 98;
    Ptr16[2 * v17 + 1] = Data[100];
    v18 = v17 + 1;
    if ( Data[100] )
    {
      if ( Data[100] == 1 )
      {
        Ptr16[2 * v18] = 99;
        Ptr16[2 * v18++ + 1] = *&Data[104];
      }
    }
    else
    {
      Ptr16[2 * v18] = 99;
      Ptr16[2 * v18++ + 1] = *&Data[106];
    }
    if ( Data[103] == 1 )
      v24 = 1000 - *&Data[101];
    else
      v24 = *&Data[101] + 1000;
    Ptr16[2 * v18] = 100;
    Ptr16[2 * v18 + 1] = v24;
    v19 = v18 + 1;
    if ( Data[38] == 1 )
      v34 = 1000 - *&Data[36];
    else
      v34 = *&Data[36] + 1000;
    Ptr16[2 * v19] = 85;
    Ptr16[2 * v19 + 1] = v34;
  }
  if ( RcxValue == 1 )
  {
    ...
  }
  return Status;
}

As we can see, pointer extracted from RBX value with SmmCpuProtocol->ReadSaveState is not validated.It meen that potential attacker can point RBX value to SMRAM content and rewrite some data inside SMRAM.

But the limitation is that RBX must point to content that starts with 2DB$ or $DB$. However, we can still point to this function code or to the memory right before SMRAM.

To protect against exploitation, you can check that the buffer pointed to by RBX does not overlap with SMRAM.

Disclosure timeline

This bug is subject to a 90 day disclosure deadline. After 90 days elapsed or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public.

Disclosure Activity Date
Intel PSIRT is notified 2022-01-17
Intel PSIRT confirmed reported issue 2022-03-22
Intel PSIRT assigned CVE number 2022-03-22
Intel PSIRT provide patch release 2022-03-22
BINARLY public disclosure date 2022-08-10

Acknowledgements

Binarly REsearch Team

Tags
SMM
FWHunt
See if you are impacted now with our Firmware Vulnerability Scanner