An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).
Binarly REsearch Team identified SMM callout on Dell platforms, which allows a attacker to access the System Management Mode and execute arbitrary code.
An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode - an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors).
The vulnerability exists in SW SMI handler located at offset 0x1BC8
in the driver.The handler is registered as follows:
result = (gSmst->SmmLocateProtocol)(&EFI_SMM_SW_DISPATCH2_PROTOCOL_GUID, 0, &EfiSmmSwDispatch2Protocol);
if ( result >= 0 )
{
RegisterContext.SwSmiInputValue = 0x31;
EfiSmmSwDispatch2Protocol->Register(EfiSmmSwDispatch2Protocol, SmiHandler, &RegisterContext, &DispatchHandle);
...
}
The pseudocode of the vulnerable handler is shown below:
EFI_STATUS __fastcall SmiHandler(
EFI_HANDLE DispatchHandle,
const void *Context,
void *CommBuffer,
UINTN *CommBufferSize)
{
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
UsbData = gUsbData;
Struct = *(gUsbData + 25824);
if ( Struct )
{
*(gUsbData + 25824) = 0;
}
else
{
if ( (*(gUsbData + 8) & 0x10) != 0 )
return 0;
Struct = *(16 * MEMORY[0x40E] + 260);
// check that the buffer does not overlap with SMRAM
if ( BufferValidation(Struct, 47) < EFI_SUCCESS )
return 0;
*(UsbData + 26904) = 1;
}
if ( !Struct )
return 0;
FuncIndex = *Struct;
if ( !*Struct )
goto _Exec;
if ( FuncIndex >= 32 && FuncIndex <= 56 )
{
FuncIndex -= 31;
_Exec:
(gUsbApiTable[FuncIndex])(Struct);
UsbData = gUsbData;
}
if ( !*(UsbData + 25824) )
*(UsbData + 26904) = 0;
return 0;
}
Struct
value can be controlled by attacker with Ring 0 privileges.If FuncIndex == 15
, than the function located at offset 0x30D8
will be called:
__int64 __fastcall UsbApiCoreProc(STRUCT *Struct)
{
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
result = Invoke(gCoreProcTable[Struct->SubfuncIndex], Struct->ParamBuffer, (Struct->ParamSizeCoreProc + 3) & ~3u);// No index validation
Struct->RetVal = 0;
*&Struct->ApiRetValCoreProc = result;
return result;
}
The first argument to the Invoke
function is a pointer to be retrieved from the structure pointed to by gUsbData
.The pseudocode of the Invoke
function is shown below:
__int64 __fastcall Invoke(__int64 (*Ptr)(void), _QWORD *ParamBuffer, unsigned int ParamSize)
{
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
v3 = ParamSize >> 3;
if ( !v3 )
return Ptr();
v4 = v3 - 1;
if ( !v4 )
return (Ptr)(*ParamBuffer);
v5 = v4 - 1;
if ( !v5 )
return (Ptr)(*ParamBuffer, ParamBuffer[1]);
v6 = v5 - 1;
if ( !v6 )
return (Ptr)(*ParamBuffer, ParamBuffer[1], ParamBuffer[2]);
v7 = v6 - 1;
if ( !v7 )
return (Ptr)(*ParamBuffer, ParamBuffer[1], ParamBuffer[2], ParamBuffer[3]);
v8 = v7 - 1;
if ( !v8 )
return (Ptr)(*ParamBuffer, ParamBuffer[1], ParamBuffer[2], ParamBuffer[3], ParamBuffer[4]);
v9 = v8 - 1;
if ( !v9 )
return (Ptr)(*ParamBuffer, ParamBuffer[1], ParamBuffer[2], ParamBuffer[3], ParamBuffer[4], ParamBuffer[5]);
if ( v9 == 1 )
return (Ptr)(
*ParamBuffer,
ParamBuffer[1],
ParamBuffer[2],
ParamBuffer[3],
ParamBuffer[4],
ParamBuffer[5],
ParamBuffer[6]);
return 0;
}
According to this pseudocode, if an attacker can control a pointer, then he can execute an arbitrary function and pass up to 7 parameters to it.
Let's see what gCoreProcTable looks like:
.text:0000000080000FC0 gCoreProcTable dq offset Proc0 ; DATA XREF: UsbApiCoreProc+15↓o
.text:0000000080000FC8 dq offset Proc1
.text:0000000080000FD0 dq offset Proc2
.text:0000000080000FD8 dq offset Proc3
.text:0000000080000FE0 dq offset Proc4
.text:0000000080000FE8 dq offset Proc5
.text:0000000080000FF0 dq offset Proc6
.text:0000000080000FF8 ; EFI_GUID EFI_SMM_RUNTIME_SERVICES_TABLE_GUID
.text:0000000080000FF8 EFI_SMM_RUNTIME_SERVICES_TABLE_GUID dq 413E287F395C33FEh
.text:0000000080000FF8 ; DATA XREF: sub_80001664+78↓o
.text:0000000080000FF8 ; sub_8000191C+88↓o ...
.text:0000000080001000 dq 3ED4E1C0888055A0h
.text:0000000080001008 dq 0
.text:0000000080001010 dq 0
.text:0000000080001018 dq 0
Struct->SubfuncIndex
is controlled by an attacker and can take values from 0 to 255.The expected size of the gCoreProcTable
array is 7, so it should check that Struct->SubfuncIndex < 7
before calling Invoke
function.
Since there is no check for Struct->SubfuncIndex
value, if the value of Struct->SubfuncIndex
equal 9 or 10 or 11, it which can lead to arbitrary code execution, since gCoreProcTable[9] = gCoreProcTable[10] = gCoreProcTable[11] = 0
.
This bug is subject to a 90 day disclosure deadline. After 90 days elapsed or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public.
Binarly REsearch Team