An attacker with high local access can exploit this vulnerability to read the contents of stack memory or global memory. This information could help with exploitation of other vulnerabilities in DXE to elevate privileges from ring 3 or ring 0 (depends on the operating system) to a DXE driver and execute arbitrary code. Malicious code installed as a result of this exploitation could survive the operating system (OS) boot process and runtime, or modify NVRAM area on the SPI flash storage (to gain persistence). Additionally, threat actors could use this vulnerability to bypass OS security mechanisms (modify privileged memory or runtime variables), influence the OS boot process, and in some cases allow an attacker to hook or modify EFI Runtime services.
Binarly REsearch Team has discovered a memory contents leak / information disclosure vulnerability that allows a potential attacker to dump stack memory or global memory into an NVRAM variable. This in turn could help building a successful attack vector based on exploiting a memory corruption vulnerability.
An attacker with high local access can exploit this vulnerability to read the contents of stack memory or global memory. This information could help with explotation of other vulnerabilities in DXE to elevate privileges from ring 3 or ring 0 (depends on the operating system) to a DXE driver and execute arbitrary code. Malicious code installed as a result of this exploitation could survive operating system (OS) boot process and runtime, or modify NVRAM area on the SPI flash storage (to gain persistence). Additionally, threat actors could use this vulnerability to bypass OS security mechanisms (modify privileged memory or runtime variables), influence OS boot process, and in some cases allow an attacker to hook or modify EFI Runtime services.
Let's take Precision 7920 Tower's firmware (version: 0.2.26.1, module sha256: cb6291081bba88deab578139ec4dabc313cf29d6fa2a1ca8254cd19ea56c2867) as an example.
The following code in the module actually allows leaking memory:
gRT->GetVariable()
offset: 0x1206
gRT->SetVariable()
offset: 0x123d
__int64 sub_B70()
{
char v0; // bp
char v1; // r13
char v2; // r12
__int64 v3; // rax
__int64 result; // rax
char v5; // r9
unsigned __int8 v6; // bl
unsigned __int8 v7; // cl
char v8; // dl
int v9; // ebx
int v10; // ecx
char v11; // dl
char v12; // cl
unsigned __int8 v13; // cl
int v14; // esi
int *v15; // rbx
int v16; // edi
char v17; // al
__int64 v18; // rbx
_BYTE v19[4]; // [rsp+30h] [rbp-19D8h]
unsigned int v20; // [rsp+34h] [rbp-19D4h] BYREF
char v21[4]; // [rsp+38h] [rbp-19D0h] BYREF
unsigned int v22; // [rsp+3Ch] [rbp-19CCh] BYREF
__int64 v23; // [rsp+40h] [rbp-19C8h] BYREF
__int64 v24; // [rsp+48h] [rbp-19C0h] BYREF
__int64 v25; // [rsp+50h] [rbp-19B8h] BYREF
__int64 v26; // [rsp+58h] [rbp-19B0h] BYREF
_QWORD v27[2]; // [rsp+60h] [rbp-19A8h] BYREF
__int64 v28; // [rsp+70h] [rbp-1998h] BYREF
EFI_EVENT v29; // [rsp+78h] [rbp-1990h] BYREF
_BYTE v30[6536]; // [rsp+80h] [rbp-1988h] BYREF
int *v31; // [rsp+1A20h] [rbp+18h] BYREF
char v32; // [rsp+1A28h] [rbp+20h] BYREF
v23 = 0xFFFFFFFFi64;
v20 = 0;
v25 = 0i64;
v0 = 0;
v1 = 0;
v2 = 0;
v24 = 6475i64;
(gBS->AllocatePages)(1i64, 10i64, 1i64, &v23);
qword_80D0 = v23;
(gBS->SetMem)(v23, 29i64, 0i64);
gUnknownProtocol = qword_80D0;
(gBS->InstallProtocolInterface)(&v25, &UNKNOWN_PROTOCOL_GUID, 0i64, &gUnknownProtocol);
if ( gST->Hdr.Revision >= 0x20000 )
sub_1F50(&v29);
if ( (sub_1EE8(&TCG_EFI_HOB_LIST_GUID, &qword_87F8) & 0x8000000000000000ui64) != 0i64 )
return 0x800000000000000Eui64;
v3 = qword_87F8;
if ( !qword_87F8 )
return 0x800000000000000Eui64;
while ( 1 )
{
if ( *v3 == 0xFFFF )
{
v3 = 0i64;
}
else if ( *v3 != 4 )
{
goto LABEL_7;
}
if ( !v3 || *&ITBT_INFO_HOB_GUID.Data1 == *(v3 + 8) && *ITBT_INFO_HOB_GUID.Data4 == *(v3 + 16) )
break;
LABEL_7:
v3 += *(v3 + 2);
}
qword_87F8 = v3;
if ( !v3 )
return 0x800000000000000Eui64;
v28 = 1805i64;
result = (gRT->GetVariable)(L"Setup", &EFI_SETUP_VARIABLE_GUID_1, &v20, &v28, &unk_80E0);
if ( result >= 0 )
{
(gBS->CreateEvent)(&VariableNameSize, 16i64, sub_A40);
(gBS->RegisterProtocolNotify)(&UNKNOWN_PROTOCOL_GUID_0, v27[1], &Registration);
sub_490();
v5 = byte_8171;
if ( byte_8171 == -1 )
{
v19[0] = 9;
v19[1] = 22;
v19[2] = 26;
v6 = 0;
while ( 1 )
{
v7 = v19[v6];
if ( v7 )
{
if ( sub_1CD8(v7, v21, &v32, &v31) >= 0 )
break;
}
if ( ++v6 >= 3u )
{
byte_8171 = 0;
byte_87F3 = 0;
sub_9FC(&byte_87F0, 0);
break;
}
}
v5 = byte_8171;
}
v8 = byte_5901;
if ( byte_87F2 != *(qword_87F8 + 56) )
v8 = 1;
byte_5901 = v8;
if ( !byte_5900 )
goto LABEL_35;
if ( !v5 )
goto LABEL_35;
byte_5901 = 1;
if ( v5 != -1 && sub_3AB4(v5, 1, 1) < 0 )
goto LABEL_35;
v26 = 1805i64;
result = (gRT->GetVariable)(L"Setup", &EFI_SETUP_VARIABLE_GUID_1, &v20, &v26, &unk_80E0);
if ( result >= 0 )
{
if ( byte_8171 == -1 )
{
if ( sub_9FC(&byte_87F0, 2) >= 0 )
{
byte_5901 = 0;
goto LABEL_34;
}
}
else if ( !sub_964(*(qword_87F8 + 53), *(qword_87F8 + 54), *(qword_87F8 + 55)) )
{
LABEL_34:
v2 = 1;
v0 = 1;
}
LABEL_35:
v9 = dword_87F4;
if ( dword_87F4 < 2 )
goto LABEL_65;
if ( byte_5900 )
goto LABEL_65;
v10 = *(sub_2024() + 12);
if ( v10 == 16 || v10 == 17 || v10 == 5 || v10 == 18 || v10 == 32 )
goto LABEL_65;
if ( v9 == 2 )
{
sub_758(1, qword_87F8);
v11 = *(qword_87F8 + 52);
if ( v11 && sub_24C4(255, v11) >= 0 )
{
v12 = *(qword_87F8 + 52);
byte_5901 = 1;
byte_87F3 = v12;
sub_9FC(&byte_87F0, 3);
goto LABEL_52;
}
}
else if ( v9 == 3 )
{
sub_758(0, qword_87F8);
if ( *(qword_87F8 + 52) != byte_87F3 )
{
dword_87F4 = 1;
if ( byte_87F3 == -1 || !byte_87F3 || sub_3AB4(byte_87F3, 0, 0) >= 0 )
{
byte_87F3 = 0;
sub_9FC(&byte_87F0, 2);
v2 = 1;
LABEL_52:
v0 = 1;
}
}
}
if ( !v0
|| (v27[0] = 1805i64,
result = (gRT->GetVariable)(L"Setup", &EFI_SETUP_VARIABLE_GUID_1, &v20, v27, &unk_80E0),
result >= 0) )
{
if ( !byte_5901 )
goto LABEL_67;
if ( !*(qword_87F8 + 52) )
goto LABEL_67;
v13 = *(qword_87F8 + 53);
if ( !v13 && !*(qword_87F8 + 54) && !*(qword_87F8 + 55) )
goto LABEL_67;
LABEL_65:
LOBYTE(v14) = *(sub_1F98(v13, *(qword_87F8 + 54), *(qword_87F8 + 55)) + 25);
if ( v14 )
{
v15 = v31;
v16 = v31;
}
else
{
v14 = sub_12E0(*(qword_87F8 + 53));
v15 = (sub_1F98(*(qword_87F8 + 53), *(qword_87F8 + 54), *(qword_87F8 + 55)) + 24);
v16 = *v15;
v1 = 1;
*v15 = *(qword_87F8 + 53) + 65792 * v14;
}
sub_1498(*(qword_87F8 + 53), *(qword_87F8 + 54), *(qword_87F8 + 55));
v17 = sub_1968(
*(qword_87F8 + 56),
v14,
*(qword_87F8 + 49),
*(qword_87F8 + 25),
*(qword_87F8 + 29),
*(qword_87F8 + 50));
if ( v1 )
*v15 = v16;
if ( v17 != -1 )
{
byte_87F2 = v17;
(gRT->SetVariable)(L"TbtHRStatusVar", &VendorGuid, 7i64, DataSize, &byte_87F0);
}
else
{
LABEL_67:
*(qword_87F8 + 56) = byte_87F2;
byte_8169 = byte_87F2;
}
if ( byte_8158 == 1 && byte_8160 == 2 && byte_87F3 && *(qword_87F8 + 58) == 1 && *(qword_87F8 + 70) < 8u )
{
byte_8178 = 8;
*(qword_87F8 + 70) = 8;
}
if ( byte_841F )
{
byte_812D = 1;
(gRT->GetVariable)( // <= first call (we can rewrite DataSize here)
L"SocketIioConfig",
&EFI_SOCKET_IIO_VARIABLE_GUID,
&v22,
&v24,
v30);
v30[4024] = 1;
(gRT->SetVariable)( // <= second call
L"SocketIioConfig",
&EFI_SOCKET_IIO_VARIABLE_GUID,
v22,
v24,
v30);
}
v18 = (gRT->SetVariable)(L"Setup", &EFI_SETUP_VARIABLE_GUID_1, v20, 1805i64, &unk_80E0);
if ( v0 )
{
__outbyte(0xCF9u, v2 != 0 ? 14 : 6);
while ( 1 )
;
}
if ( *(qword_87F8 + 52) && !sub_964(*(qword_87F8 + 53), *(qword_87F8 + 54), *(qword_87F8 + 55)) )
*(qword_87F8 + 52) = 0;
return v18;
}
}
}
return result;
}
The gRT->SetVariable()
service is called with the DataSize
as an argument, which will be overwritten inside the gRT->GetVariable()
service if the length of SocketIioConfig
NVRAM variable is greater than 6475
.
Thus, a potential attacker can dump X - 6475
bytes from the stack (or global memory) into SocketIioConfig NVRAM variable by setting SocketIioConfig
NVRAM variable's size to X > 6475
.
To fix this vulnerability the DataSize
must be re-initialized with the size of SocketIioConfig
before calling gRT->SetVariable()
.
This bug is subject to a 90 day disclosure deadline. After 90 days elapsed or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public.
Binarly REsearch Team