An attacker with local privileged access can exploit this vulnerability to read the contents of the physical memory and use this information to exploit other vulnerabilities in DXE. A malicious code installed as a result of the vulnerability exploitation in a DXE driver could survive across an operating system (OS) boot process and runtime or modify NVRAM area on SPI flash storage (to gain persistence on target platform). Additionally, this vulnerability potentially could be used by threat actors to bypass OS security mechanisms (modify privileged memory or runtime variables), influence on the OS boot process, and in some cases would allow an attacker to hook or modify EFI Runtime services.
Binarly REsearch Team has discovered a memory contents leak / information disclosure vulnerability. BmpHeader->ImageOffset is not validated during parsing of arbitrary BMP file on Insyde firmware. The attacker can make it as high as 0xFFFFFFFF and thus display the contents of physical memory (in the form of pixels).
An attacker with local privileged access can exploit this vulnerability to read the contents of the physical memory and use this information to exploit other vulnerabilities in DXE. A malicious code installed as a result of the vulnerability exploitation in a DXE driver could survive across an operating system (OS) boot process and runtime or modify NVRAM area on SPI flash storage (to gain persistence on target platform). Additionally, this vulnerability potentially could be used by threat actors to bypass OS security mechanisms (modify privileged memory or runtime variables), influence on the OS boot process, and in some cases would allow an attacker to hook or modify EFI Runtime services.
The pseudocode of the vulnerable function is shown below:
unsigned __int64 __fastcall DecodeBMP(
BMP_IMAGE *Image,
unsigned __int64 ImageSize,
__int64 *a3,
unsigned __int64 *a4,
_QWORD *a5,
_QWORD *a6)
{
__int64 PixelWidth; // r9
__int64 BitPerPixel; // rdx
__int64 PixelHeight; // r10
unsigned __int64 v12; // rcx
__int64 ImageOffset; // r8
unsigned int v14; // r12d
int v15; // ecx
UINT32 NumberOfColors; // eax
CHAR8 *v17; // rbx
unsigned __int64 v18; // rsi
__int64 v19; // rcx
__int64 v20; // rax
__int64 v22; // r15
unsigned __int64 v23; // rdx
unsigned __int64 v24; // rsi
__int64 v25; // rcx
unsigned __int64 v26; // r9
CHAR8 *v27; // r8
__int64 v28; // rcx
CHAR8 v29; // al
CHAR8 v30; // al
__int64 v31; // rax
unsigned __int64 v32; // rcx
__int64 v33; // rcx
unsigned __int64 v34; // r10
char v35; // al
unsigned __int64 v36; // rbx
__int64 v37; // rdi
char v38; // [rsp+20h] [rbp-38h]
char v39; // [rsp+68h] [rbp+10h]
if ( ImageSize < 0x36 )
return 0x8000000000000002ui64;
if ( Image->BmpHeader.CharB != 66
|| Image->BmpHeader.CharM != 77
|| Image->BmpHeader.CompressionType > 2
|| Image->BmpHeader.HeaderSize != 40 )
{
return 0x8000000000000003ui64;
}
PixelWidth = Image->BmpHeader.PixelWidth;
BitPerPixel = Image->BmpHeader.BitPerPixel;
PixelHeight = Image->BmpHeader.PixelHeight;
v12 = PixelHeight * (((unsigned int)(BitPerPixel * Image->BmpHeader.PixelWidth + 31) >> 3) & 0x1FFFFFFC);
if ( v12 > 0xFFFFFFFF )
return 0x8000000000000002ui64;
// BRLY-LOGOFAIL-2023-001: Lack of BmpHeader->ImageOffset validation will lead to OOB Read
ImageOffset = Image->BmpHeader.ImageOffset;
if ( (unsigned int)ImageOffset < 0x36 )
return 0x8000000000000002ui64;
v14 = 0;
if ( (unsigned int)ImageOffset > 0x36 )
{
BitPerPixel = (unsigned int)(BitPerPixel - 1);
if ( (_DWORD)BitPerPixel )
{
BitPerPixel = (unsigned int)(BitPerPixel - 3);
if ( (_DWORD)BitPerPixel )
{
if ( (_DWORD)BitPerPixel == 4 )
v15 = 256;
else
v15 = 0;
}
else
{
v15 = 16;
}
}
else
{
v15 = 2;
}
NumberOfColors = Image->BmpHeader.NumberOfColors;
if ( !NumberOfColors )
NumberOfColors = v15;
v14 = NumberOfColors;
v12 = 4i64 * NumberOfColors;
if ( ImageOffset - 54 < v12 )
return 0x8000000000000002ui64;
}
v17 = &Image->BmpHeader.CharB + ImageOffset;
v38 = (_BYTE)Image + ImageOffset;
if ( (unsigned __int64)(PixelHeight * PixelWidth) > 0x3FFFFFFFFFFFFFFFi64 )
return 0x8000000000000003ui64;
v18 = 4 * PixelHeight * PixelWidth;
if ( v18 >= 0x100000000i64 )
return 0x8000000000000003ui64;
v39 = 0;
if ( *a3 )
{
if ( *a4 < v18 )
{
*a4 = v18;
return 0x8000000000000005ui64;
}
}
else
{
*a4 = v18;
if ( (unsigned __int8)sub_D5C(v12, BitPerPixel, ImageOffset, PixelWidth) )
v20 = sub_DAC(v19, (v18 >> 12) + ((v18 & 0xFFF) != 0));
else
v20 = sub_DE4(v19, v18);
*a3 = v20;
v39 = 1;
if ( !v20 )
return 0x8000000000000009ui64;
LODWORD(PixelWidth) = Image->BmpHeader.PixelWidth;
}
*a6 = (unsigned int)PixelWidth;
*a5 = Image->BmpHeader.PixelHeight;
v22 = *a3;
if ( Image->BmpHeader.CompressionType == 1 )
{
if ( v18 )
sub_330(*a3, v18, 0i64);
sub_740(v22, v17, &Image->field_36, Image);
return 0i64;
}
if ( Image->BmpHeader.CompressionType == 2 )
{
if ( v18 )
sub_330(*a3, v18, 0i64);
sub_540(v22, v17, &Image->field_36, Image);
return 0i64;
}
v23 = Image->BmpHeader.PixelHeight;
v24 = 0i64;
if ( !(_DWORD)v23 )
return 0i64;
while ( 1 )
{
v25 = Image->BmpHeader.PixelWidth;
v26 = 0i64;
v27 = (CHAR8 *)(v22 + 4 * v25 * ((unsigned int)v23 - v24 - 1));
if ( (_DWORD)v25 )
break;
LABEL_62:
if ( (((_BYTE)v17 - v38) & 3) != 0 )
v17 += 4i64 - (((_BYTE)v17 - v38) & 3);
++v24;
v23 = Image->BmpHeader.PixelHeight;
if ( v24 >= v23 )
return 0i64;
}
while ( 1 )
{
switch ( Image->BmpHeader.BitPerPixel )
{
case 1u:
v34 = 0i64;
do
{
if ( v26 >= Image->BmpHeader.PixelWidth )
break;
v23 = ((unsigned __int8)*v17 >> (7 - v34)) & 1;
if ( (unsigned int)v23 >= v14 )
return 0x8000000000000002ui64;
++v26;
v35 = 7 - v34++;
v27[2] = *((_BYTE *)&Image->field_36 + 4 * (((unsigned __int64)(unsigned __int8)*v17 >> v35) & 1) + 2);
v27[1] = *((_BYTE *)&Image->field_36 + 4 * (((unsigned __int64)(unsigned __int8)*v17 >> v35) & 1) + 1);
*v27 = *((_BYTE *)&Image->field_36 + 4 * (((unsigned __int64)(unsigned __int8)*v17 >> v35) & 1));
v27 += 4;
}
while ( v34 < 8 );
v27 -= 4;
--v26;
goto LABEL_61;
case 4u:
v32 = (unsigned __int64)(unsigned __int8)*v17 >> 4;
if ( (unsigned int)v32 >= v14 )
return 0x8000000000000002ui64;
v27[2] = *((_BYTE *)&Image->field_36 + 4 * v32 + 2);
v27[1] = *((_BYTE *)&Image->field_36 + 4 * v32 + 1);
*v27 = *((_BYTE *)&Image->field_36 + 4 * v32);
if ( v26 < Image->BmpHeader.PixelWidth - 1 )
{
v27 += 4;
v33 = *v17 & 0xF;
++v26;
if ( (unsigned int)v33 >= v14 )
return 0x8000000000000002ui64;
v27[2] = *((_BYTE *)&Image->field_36 + 4 * v33 + 2);
v27[1] = *((_BYTE *)&Image->field_36 + 4 * v33 + 1);
*v27 = *((_BYTE *)&Image->field_36 + 4 * v33);
}
goto LABEL_61;
case 8u:
v31 = (unsigned __int8)*v17;
if ( (unsigned int)v31 >= v14 )
return 0x8000000000000002ui64;
v27[2] = *((_BYTE *)&Image->field_36 + 4 * v31 + 2);
v27[1] = *((_BYTE *)&Image->field_36 + 4 * (unsigned __int8)*v17 + 1);
*v27 = *((_BYTE *)&Image->field_36 + 4 * (unsigned __int8)*v17);
goto LABEL_61;
case 0x10u:
*v27 = (8 * *v17) | ((unsigned __int8)*v17 >> 2) & 7;
v27[1] = (8 * (*(_WORD *)v17 >> 5)) | (*(_WORD *)v17 >> 7) & 7;
v27[2] = (8 * (*(_WORD *)v17 >> 10)) | (*(_WORD *)v17 >> 12) & 7;
++v17;
goto LABEL_61;
}
v28 = (unsigned int)Image->BmpHeader.BitPerPixel - 24;
if ( Image->BmpHeader.BitPerPixel == 24 )
{
*v27 = *v17;
v30 = v17[1];
v17 += 2;
v27[1] = v30;
v27[2] = *v17;
goto LABEL_61;
}
if ( Image->BmpHeader.BitPerPixel != 32 )
break;
*v27 = *v17;
v27[1] = v17[1];
v29 = v17[2];
v17 += 3;
v27[2] = v29;
LABEL_61:
++v26;
++v17;
v27 += 4;
if ( v26 >= Image->BmpHeader.PixelWidth )
goto LABEL_62;
}
if ( v39 )
{
v36 = *a4;
v37 = *a3;
if ( (unsigned __int8)sub_D5C(v28, v23, v27, v26) )
(*(void (__fastcall **)(__int64, unsigned __int64))(qword_EA0 + 48))(v37, (v36 >> 12) + ((v36 & 0xFFF) != 0));
else
(*(void (__fastcall **)(__int64))(qword_EA0 + 72))(v37);
*a3 = 0i64;
}
return 0x8000000000000003ui64;
}
As we can see from the pseudocode, BmpHeader->ImageOffset
is not validated. The attacker can make it as high as 0xFFFFFFFF
and thus display the contents of physical memory (in the form of pixels) at any offset.
This bug is subject to a 90 day disclosure deadline. After 90 days elapsed or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public.
Binarly REsearch Team